

Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

CrossMark

talanta

Chemical profiling of Wu-tou decoction by UPLC-Q-TOF-MS

Yao Qi^{a,b}, Shizhe Li^c, Zifeng Pi^a, Fengrui Song^a, Na Lin^d, Shu Liu^{a,*}, Zhiqiang Liu^{a,*}

^a Changchun Center of Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China

^b University of the Chinese Academy of Sciences, Beijing 100039, China

^c College of Chemistry, Changchun Normal University, Changchun 130032, China

^d Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China

ARTICLE INFO

Article history: Received 25 July 2013 Received in revised form 25 September 2013 Accepted 28 September 2013 Available online 8 October 2013

Keywords: Wu-tou decoction UPLC–MS Chemical profiling Traditional Chinese medicine formula

ABSTRACT

Wu-tou decoction (WTD), a traditional Chinese medicine (TCM) formula, is composed of Aconiti Radix Cocta, Ephedrae Herba, Paeoniae Radix Alba, Astragali Radix and Glycyrrhiza Radix Preparata, and it has been used for more than a thousand years to treat rheumatic arthritis, rheumatoid arthritis and pain of joints, while the active constitutions of WTD are unclear. In this research, an ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC–Q-TOF-MS) method in both positive and negative ion mode was established to investigate the major constitutions in WTD. A Waters ACQUITY UPLC BEH C18 column was used to separate the aqueous extract of WTD. Acetonitrile and 0.1% aqueous formic acid (v/v) were used as the mobile phase. 74 components including alkaloids, monoterpene glycosides, triterpene saponins, flavones and flavone glycosides were identified or tentaively characterized in WTD based on the accurate mass within 15 ppm error and tandem MS behavior. All the constitutions were also detected in the corresponding individual herbs. These results will provide a basis for further study *in vivo* of WTD and the information of potential new drug structure for treating rheumatic arthritis.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Traditional Chinese medicine (TCM) is regarded naturally and harmlessly and accepted gradually in the world in recent years [1,2]. Formula, a combination of plant species, is designed on the basis of patients' symptoms, clinical experience and TCM theories. It is characterized by multi-component, multi-target and synergistic therapeutic efficacies, but the working mechanisms remain unknown [3]. Wu-tou decoction (WTD), a TCM formula, has been used for more than a thousand years to treat rheumatic arthritis, rheumatoid arthritis and pain of joints. It was first recorded in "Jin Kui Yao Lve" written by Zhongjing Zhang, and it is composed of Aconiti Radix Cocta, Ephedrae Herba, Paeoniae Radix Alba, Astragali Radix and Glycyrrhiza Radix Preparata with the mass ratio of 2:3:3:3:3. In recent years, researchers found that WTD could reduce the extent of footpad swelling and decline the concentration of NO in serum of adjuvant-induced arthritis rats [4]. Integrating network analysis showed that the predicted effector molecules of WTD were significantly associated with neuroactive ligand-receptor interaction and calcium signaling pathway [5].

* Corresponding authors. Tel./fax: +86 431 8526 2236.

Many constitutions of herbs in WTD have excellent antiinflammatory and antioxidant activity. Total alkaloids of Aconiti Radix, total glycosides or polysaccharides of Paeoniae Radix Alba and polysaccharides of Astragali Radix could reduce multiple indices of arthritis in rat model of rheumatoid arthritis [6,7]. Ephedrine hydrochloride could contribute to the immune homeostasis of lipopolysaccharide induced endotoxic shock mouse model by inducing interleukin-10 secretion and inhibiting tumor necrosis factor- α through balancing the production of proinflammatory cytokines and anti-inflammatory cytokine in TLR4 signaling [8]. Glycyrrhiza uralensis extracts could strongly inhibit NF-kBmediated inflammatory and Nrf2-ARE-anti-oxidative stress signaling pathways [9]. And active constitutions extracted by organic solvent, such as ethanol and n-butanol, in each herb of WTD have been studied. However, to our knowledge, the vast majority of TCM formulas need to be decocted in order to absorb better and produce the best therapeutic effects. Thus, it is necessary to get the chemical profiling of the aqueous extract of WTD for understanding its biological activity or pharmacological activity.

Recently, ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC–Q-TOF-MS) has been widely used to characterize chemical profiling of plants [10–12]. UPLC columns packed with sub-2 μ m particles could improve the separation efficiency, heighten the resolution and shorten the LC run time compared with traditional HPLC

E-mail addresses: mslab20@ciac.jl.cn, 1985liushu@163.com (S. Liu), liuzq@ciac.jl.cn (Z. Liu).

^{0039-9140/\$ -} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.talanta.2013.09.054

columns [13,14]. And high resolution mass spectrometry such as Q-TOF-MS could obtain a more specific and accurate mass when trying to identify constitutions of herbs. In order to obtain the chemical profiling of WTD, an UPLC-ESI-Q-TOF method has been established in both positive and negative ion mode. The constitutions in WTD were identified or tentatively characterized based on the accurate mass and tandem MS behavior, and the sources of these components were confirmed by comparing the base peak chromatograms of WTD and individual herbal extracts.

2. Materials and methods

2.1. Materials

Aconiti Radix Cocta, Ephedrae Herba, Paeoniae Radix Alba, Astragali Radix and Glycyrrhiza Radix Preparata were purchased from Beijing Huamiao Chinese Medicine Engineering Development Center (Beijing, China). All herb medicines were identified by Prof. Shumin Wang (Changchun University of Chinese Medicine). Hypaconitine, ephedrine, paeoniflorin, liquiritin, glycyrrhizic acid, calycosin, formononetin and astragaloside IV were obtained from the Chinese Authenticating Institute of Material and Biological Products (Beijing, China). Benzoylmesaconine, benzoylhypacoitine and benzoylaconine were purchased from LanYuan Biological technology Co., Ltd. (Shanghai, China). Leucine enkephalin and sodium formate was purchased from Waters (Milford, USA). HPLC-grade acetonitrile and formic acid were obtained from Fisher Scientific (Loughborough, UK). Ultrapure water was prepared by the Milli-Q plus (Milford, MA, USA) water purification system.

2.2. Extraction

Powder of Aconiti Radix Cocta 1 g, Ephedrae Herba 1.5 g, Paeoniae Radix Alba 1.5 g, Astragali Radix 1.5 g and Glycyrrhizae Radix Preparata 1.5 g were immersed in 70 mL deionized water for 1 h, and then heated to refluxing for 1.5 h. Water as 8 times of the above total weight was added for another 1.5 h refluxing after filtering. The filtered extraction solutions were combined and diluted to attain a solution of 35 mg crude drug per milliliter. Samples of individual medicines were extracted as the same way adopted above and all samples were filtered through a 0.22 μ m filter membrane before UPLC–MS analysis.

2.3. UPLC–MS and UPLC–MS² analysis

A Waters Acquity UPLC system coupled with a Q-TOF SYNAPT G2 High Definition Mass Spectrometer (Waters, USA) was used to analyze the chemical profiling of WTD. Chromatographic separation was performed on a Waters ACQUITY UPLC BEH C18 Column (1.7 $\mu m,$ 2.1 \times 50 mm) keeping at 35 °C. 0.1% aqueous formic acid (v/v) (A) and acetonitrile (B) were used as the mobile phase. The gradient elution with the flow rate of 0.3 mL/min was performed as follows: 10% B at 0-2 min, 10-15% B at 2-7 min, 15-30% B at 7-15 min, 30-39% B at 15-21 min, 39% up to 100% at 21-25 min. The sample inject volume was 5 µL. The MS analysis was carried out by the ESI source in both positive and negative ion mode, and full-scan mass range was 100-1200 Da. The source temperature was 110 °C, and the desolvation gas temperature was 300 °C. The flow rates of cone and desolvation gas were set at 30 L/h and 600 L/h, respectively. The voltages of capillary, cone and extraction cone in positive ion mode were set at 2.5 kV, 35 V and 5.0 V, respectively, and in negative ion mode, they were set at 2.0 kV, 35 V and 5.0 V, respectively. Leucine enkephalin (m/z 556.2771 in positive ion mode and m/z 554.2615 in negative ion mode) was used as a reference mass. Sodium formate was used to set up mass spectrometer calibration in both positive and negative ion mode. MS^E was applied for the MS/MS analysis with the low collision energy of 5 eV and the high collision energy of 25–35 eV.

3. Results and discussion

3.1. Optimization of LC and MS conditions

As the components in TCM are complex, it is necessary to chose sensible mobile phase to improve reproducibility, selectivity, or peak shape. Mobile phase systems, such as acetonitrile-aqueous, methanol-aqueous, acetonitrile-aqueous with 0.1% formic acid and acetonitrile-aqueous with 5 mM ammonium bicarbonate adjusted to pH 10.5 with ammonia were selected to optimize the LC conditions. Both acetonitrile-aqueous with 0.1% formic acid and acetonitrile-aqueous with 5 mM ammonium bicarbonate adjusted to pH 10.5 with ammonia could reduce the peak tailing, but in negative ion mode it gave a weak signal response when alkaline mobile phase mentioned above was used. Thus, acetonitrileaqueous with 0.1% formic acid on the optimized gradient were selected as the mobile phase. The MS parameters were optimized on the basis of improving the ion intensity, and the optimized parameters were set as Section 2.3. Base peak chromatograms of WTD and its five individual herbs in positive and negative ion mode are shown in Figs. 1 and 2.

3.2. Identification of main constituents in WTD

74 components including alkaloids, monoterpene glycosides, triterpene saponins, flavones and flavone glycosides in WTD were identified (Tables 1 and 2). And their sources were confirmed by comparing the base peak chromatograms of WTD and its five individual herbal extracts. For the standard available compound, it was identified by comparing retention time and accurate mass. For the standard unavailable compound, the structure was presumed mainly based on accurate mass and tandem mass spectra. In this study, the molecular formula was established by high-accuracy quasi-molecular ion such as $[M+H]^+$, $[M+Na]^+$, $[M-H]^-$ and [M+HCOO]⁻ within mass error of 15 ppm and fractional isotope abundance. Then the most rational molecular formula was searched in chemical databases, such as Chemspider (www.chem spider.com) and Massbank (http://www.massbank.jp). When several isomers were matched, the structure that had been reported previously from the five individual herbs of WTD would have higher possibility than the other isomers. Finally, fragment ions were used to further confirm the chemical structure. The structures of main active constitutions in WTD are showed in Fig. 3.

3.2.1. Alkaloids

43 alkaloids in WTD were indentified in positive ion mode. Four of them were the major constituents in Ephedrae Herba and the others were diterpenoid alkaloids in Aconiti Radix Cocta. Compound 8 was determined as ephedrine by comparing with the reference compound. To indentify other alkaloids in WTD from Ephedrae Herba, the feature fragment ions of ephedrine were investigated. The possible fragmentation mechanism is depicted in Fig. 4A. It is shown that the neutral losses like H₂O, CH₄ and CH₃NH₂ are the main fragment patterns of ephedrine. Compounds 5 and 6 showed $[M+H]^+$ ion at m/z 152, 14 Da less than that of ephedrine. They may be the previously reported norephedrine or norpseudoephedrine. Because the information obtained by MS was not enough, these optical isomers could not be distinguished. Compound 11 gave $[M+H]^+$ ion at m/z 180 and similar fragment patterns with ephedrine, and it could be identified as methylephedrine.

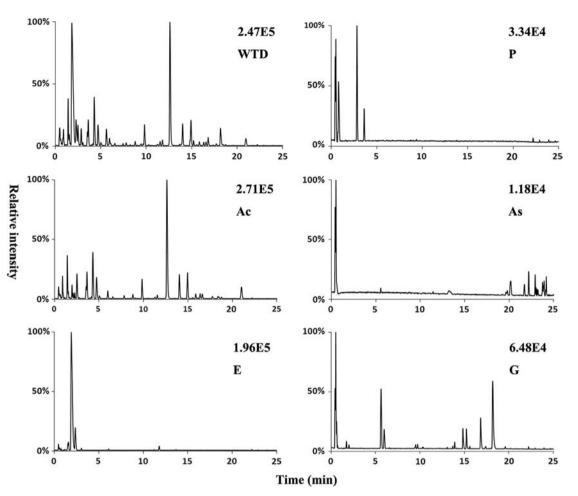


Fig. 1. Base peak chromatograms of WTD and the five individual herbs in positive ion mode. Ac=Aconiti Radix Cocta, E=Ephedrae Herba, P=Paeoniae Radix Alba, As=Astragali Radix, and G=Glycyrrhiza Radix Preparata.

The fragmentation pathways of aconitum alkaloids have been investigated previously [15–17]. The neutral losses of H₂O, MeOH, AcOH or BzOH were commonly observed in tandem mass spectrum of aconitum alkaloids. In addition, the neutral loss of 28 Da corresponding to eliminate one molecule of CO or C₂H₄ was the feature loss in diester-diterpenoid alkaloids (DDA). The order of eliminations of carboxyl, benzyl, ethyl or methyl and methoxy in DDAs was also investigated previously [18]. Hydroxyl at C1 position was the most active site for monoester-diterpenoid alkaloids (MDA), and moreover, hydroxyl at C15 position could not be eliminated even at a high fragmentor voltage in amine diterpenoid alkaloids (ADA) [17]. These findings could provide principles for understanding tandem mass spectrum of aconitum alkaloids. Take hypaconitine as an example (Fig. 4B), fragment ions at m/z 584, 556, 524, 496, 492, 464 and 338 were corresponding to $[M+H-CH_3OH]^+$, $[M+H-AcOH]^+$, $[M+H-AcOH-CH_3OH]^+$, $[M+H-AcOH-CH_3OH-CH_3OH]^+$ $CO]^+$, $[M+H-AcOH-2CH_3OH]^+$, $[M+H-AcOH-2CH_3OH-CO]^+$ and $[M+H-3CH_3OH-BzOH]^+$, respectively.

Hypaconitine, benzoylmesaconine, benzoylhypacoitine and benzoylaconine were identified by pure standards. Compounds 34, 38, 52 and 62 showed $[M+H]^+$ ion at m/z 606, 620, 648 and 662, 16 Da greater than that of benzoylmesaconine, benzoylaconine, mesaconine and aconine, respectively. As C10 position was commonly substituted by hydroxyl in aconitum alkaloids, they were presumed as 10-OH benzoylmesaconine, 10-OH benzoylaconine, 10-OH mesaconine and 10-OH aconine, respectively. Compounds 53 and 66 gave $[M+H]^+$ ion at m/z 630 and 588, 16 Da less than that of aconine and benzoylaconine. Their tandem mass

spectra were similar to hypaconitine and benzoylhypacoitine, and some fragment ions of compound 53 were 14 Da greater than the fragment ions of hypaconitine. They could be the reported deoxyaconine and benzoyldeoxyaconine. Likewise, compound 44 was identified as benzoyl-3,13-deoxymesaconine. Compounds 50, 58 and 61 were 60 Da less than mesaconitine, aconitine and hypaconitine, respectively. They were presumed as pyromesaconitine, pyroaconitine, and pyrohypaconitine, respectively, attributing to one molecule of acetic acid eliminated from mesaconitine, aconitine and hypaconitine, respectively. Similarly, Compounds 4, 10 and 15 were identified as mesaconine, aconine and hypaconine, respectively. Compounds 2, 9, 12, 26, 27 and 30 could be considered as chuanfumine, isotalatizidine, songorine, guanfu base H, chasmanine and talatizamine, respectively, based on their molecular weight and tandem fragment patterns. Compounds 16, 18 and 22 showed the same $[M+H]^+$ ion at m/z 454. Due to the fact that compound 16 was the most abundance of them, it was the reported fuziline. The other two isomers were not distinguished. Compounds 19, 21 and 29 gave the same $[M+H]^+$ ion at m/z 438. Owing to its high abundance, compound 19 was the reported neoline. Fragment ions of compound 21 were 16 Da more than the corresponding fragment ions of talatizamine, implying the presence of an additional hydroxy. It was tentatively characterized as 10-OH talatizamine. Compound 29 could be the reported bullatine B. Compounds 3 and 7 had the same molecular weight of 423 Da. Methoxy at C16 position was more easily eliminated than hydroxyl at C15 position. Compound 3 showed fragment ions without $[M+H-2H_2O]^+$, thus it was presumed as senbusine B. Compound 7 could be the reported senbusine A.

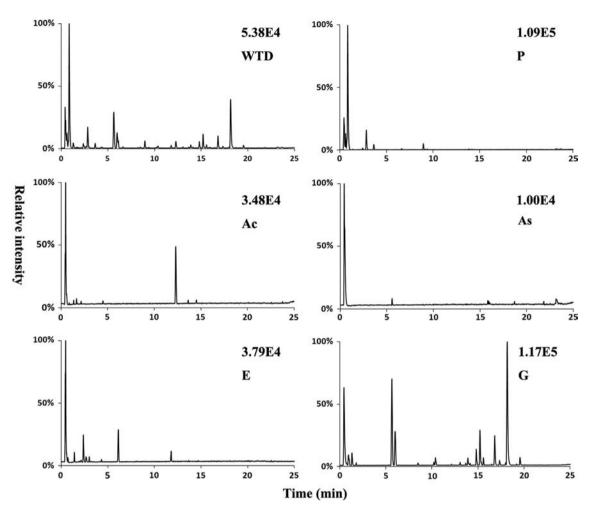


Fig. 2. Base peak chromatograms of WTD and the five individual herbs in negative ion mode. Ac=Aconiti Radix Cocta, E=Ephedrae Herba, P=Paeoniae Radix Alba, As=Astragali Radix, and G=Glycyrrhiza Radix Preparata.

3.2.2. Monoterpene glycosides

Monoterpene glycosides from Paeoniae Radix Alba showed quasi-molecular ion $[M+H]^+$ and $[M+Na]^+$ in positive ion mode, or $[M-H]^-$ and $[M+HCOO]^-$ in negative ion mode. The monoterpene glycosides in Radix Paeoniae were usually esterified with benzoic acid, p-hydroxybenzoic acid, gallic acid and substituted by sulfuric acid [19,20]. The neutral losses of a benzoic acid or a glucosyl group, and aglycone ions at m/z 195 or 197, or their fragmentations of losing H₂O and CO were usually detected in these compounds [21,22]. Paeoniflorin was identified by comparing retention time and accurate mass with the pure standard. The tandem mass spectra and possible fragmentation pathways of paeoniflorin are illustrated in Fig. 5. The ion at m/z 179 was the base peak in positive ion mode corresponding to the glucosyl residue. In negative ion mode, the ion at m/z 449 corresponding to the loss of CH₂O was the feature fragment ion. In that case, elimination of a benzoic acid and a glucosyl residue happened successively. The ion at m/z 121 was generated by benzoic acid.

Compound 13 and paeoniflorin had the same molecular weight, but there was no ion at m/z 449 observed in MS² of compound 13 in negative ion mode. It was identified as albiflorin. Compound 1 was 64 Da greater than paeoniflorin, showing similar fragment pathways as paeoniflorin such as successively elimination of a benzoic acid and a glucosyl residue. It was presumed as paeoniflorin sulfonate. Compound 43 showed $[M+H]^+$ and $[M+Na]^+$ ions at m/z 585 and 607, respectively, and it gave an fragment ion at m/z 503. It was indicated that compound 43 had an additional benzoyl than paeoniflorin. It could be the reported benzoylpaeoniflorin.

Compound 72 gave $[M-H]^-$ at m/z 631, 152 Da greater than that of paeoniflorin. Its fragment ion at m/z 313 was generated by a galloyl glucose residue. It was tentatively assigned as galloyl paeoniflorin. Compound 74 showed $[M-H]^-$ at m/z 647, 104 Da greater than that of paeoniflorin sulfonate. And the fragment ion at m/z 259 was the feature fragment in tandem mass spectra of paeoniflorin sulfonate analogs. It could be the reported benzoylpaeoniflorin sulfonate.

3.2.3. Flavones and their glycosides

Flavones and their glycosides detected in WTD came from Astragali Radix and Glycyrrhiza Radix Preparata. Flavones only showed $[M+H]^+$ in positive ion mode, but flavones glycosides showed both $[M+H]^+$ and $[M+Na]^+$. In negative ion mode, only [M–H][–] was observed for flavones and their glycosides. The main MS/MS behavior of aglycones described previously was retro Diels-Alder (RDA) fragmentation pathway. Losses of small molecules and/or radicals like CH3. and CO were also discussed [23-25]. For flavones glycosides, in both positive and negative ion mode, the product ions were detected due to the cleavage at the glycosidic linkages [26], and fragment ions with low m/z were the same as the fragment ions obtained in their aglycones, such as liquiritin (Fig. 6). The loss of 162 Da was the characteristic neutral loss of flavonoid O-glycosides in both positive and negative ion mode. RDA fragments of m/z 137 and 119, m/z 135 and 119 were the feature fragments in positive and negative ion mode, respectively. Retrocyclisation cleavage also happened in positive ion mode.

Table 1	
Compounds identified in WTD by	UPLC-MS in positive ion mode.

	Peak no.		Measured mass [M+H] ⁺ / [M+Na] ⁺	Molecular formula	Indentify	Error (ppm) ^a	Source ^b	MS ²
2 0.00 382-559/ (1	0.84	- /567.1153	C23H28013S	Paeoniflorin sulfonate	1.8	Р	261.0455. 179.0713
3 0.66 42.25867 -1.6 -1.6 40 408.2588, 43.282, 345.2307, 422.2160, 404.3086 5 1.7 152.1067/- G4/Ja/M0 Nortphedine or -1.4 A 488.2588, 43.482, 345.2307, 422.2160, 404.3086 6 1.54 152.1067/- G4/Ja/M0 Nortphedine or -0.6 F 114.0996, 117.0718, 115.0661 7 1.57 442.2584, 45.2307, 422.2160, 404.3086, 123.282, 117.0718, 115.0661 Nortphedine or -2.6 F 144.0958, 123.882, 491, 324.271, 312.220 8 1.22 105.10067/- C-4H-NO Exploring -2.3 A 400.235, 33.82.491, 374.273, 356.2195 11 2.2 13.23 61.239/- C-4H-NO Exploring -3.1 E 14.227, 117.0718, 115.0661 12 2.2 13.232.2714- C-4H-NO Recherization -3.3 1.4 40.228, 13.231, 322.177, 312.220 13 2.4 441.1059.01.40279/- C-4H-NO Recherization -3.3 1.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7								
5 1.47 152.1067/ 1.47 Guitson biospace Current Composition entry O. E 134.0996, 1172718, 115.0661 6 1.54 152.1068/ 1.42 Guitson Composition entry O. E 134.0996, 1172718, 115.0661 7 1.67 422.2444					Senbusine B	-6.5	Ac	
Norpieudinie Orginaloghedinie -0.5 F. 154,0896,1120718,115.0561 1 47 432,354,1 -0.1,000	4	1.41	486.2691/-		Mesaconine	-1.4	Ac	468.2589, 454.2482, 436.2307, 422.2160, 404.2086
6 1.54 152.1069/. C _H ₁ NO Noncynderplicitie -0.6 E 18.40096, 112078, 1150553 7 157 424.2044/ C _H ₁ NO, Senbusine A -1.7 Ac 40.2083, 138.2404, 734.2373, 135.2105 18.2 100 221 500.2437 C _H ₁ NO, Accent Methyle Presson 10 12 100 12.21 100.2083, 138.2504, 122.039, 117.208, 115.0553 12 223 500.2437 C _H ₁ NO, Accent Methyle Presson -4 Ac 482.2011, 468.2598, 400.070, 418.202, 418.207, 418.2192, 401.402.83, 130.2413, 221.7, 312.2230 12 234 481.105550.1490, C _H ₁ NO, Accent Methyle Presson -0.8 Ac 430.228, 330.2413, 221.43, 122.030, 418.2192, 419.742.285 13 324 481.105550.1490, Presson C _H ₁ NO, Not insemified -1.8 P 432.309, 400.2018, 336.2310, 372.213, 312.2213, 322.213 14 324.249,310, Presson C _H ₁ NO, Nonine -1.8 Ac 432.262, 404.2438, 386.2310, 372.2313, 350.2310, 372.2313, 350.2317, 353.2310, 332.2317, 323.2310, 323.2317, 323.2314, 323.2310, 323.2317, 323.2314, 323.2314, 323.2314, 323.2344, 370.2380, 362.2317, 353.2344, 372.2380,	5	1.47	152.1067/-	C ₉ H ₁₃ NO		-2.0	E	134.0996, 117.0718, 115.0563
7 1.57 42.42644 C, Ha, NO, Senbusine Á, Linkow M,	6	1.54	152.1069/-	$C_9H_{13}NO$	Norephedrine or	-0.6	E	134.0996, 117.0718, 115.0563
9 1.82 408.2775/1- C, H, NO, Cash, NO, 2002, 382, 2002, 3002, 312, 322, 2002, 3002, 312, 322, 2002, 3002, 312, 322, 2002, 3002, 312, 322, 2012, 300	7	1.67	424.2644/-	C23H37NO6		- 11.7	Ac	406.2636, 388.2494, 374.2373, 356.2195
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	1.82	166.1236/-	C ₁₀ H ₁₅ NO	Ephedrine	1.8	E	148.1110, 133.0868, 132.0829, 117.0718, 115.0563
11 2.27 180.1382/- 180.2387/- 182 Circle (1.40000, 1120718, 1120078, 112078, 1120078, 112078, 1120078, 112078, 1120078, 112078, 112078, 1120078, 112078,	9	1.82	408.2775/-	C ₂₃ H ₃₇ NO ₅	Isotalatizidine	7.6	Ac	390.2635, 378.2656, 360.2581, 358.2401, 342.2437
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	$C_{25}H_{41}NO_9$				482.2611, 468.2599, 450.2510, 436.2307, 418.2192
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
14 3.02 -/JSZ1868 C.g ¹¹ 20.57 Not indentified -4.5 E 317.0630, 200539 15 3.54 4542799/- C.g ¹¹ 20.57 Not indentified -0 Ac 4362672, 4462195, 382.149, 374.228 16 3.61 4542799/- C.g ¹¹ 20.77 Fillion 00 Ac 4362672, 442438, 382.404, 370.2390, 362.2317, 345.404 17 3.65 4611807/5021498 C.g ¹¹ 20.77 G.g ¹¹ 20.78 Delosine or bullatine F 0.5 Ac 406.2764, 398.2494, 370.2390, 362.2317, 345.404 19 4.20 432.0867/- C.g ¹¹ 20.78 O.G.M ¹¹ 106 -1.2 Ac 406.2764, 398.2494, 370.2390, 362.2317, 345.404 21 5.00 482.2803/- C.g ¹¹ 20.78 Delosine or Bullatine F -0.4 Ac 452.2053, 420.4248 22 5.01 484.2930/- C.g ¹¹ 20.78 Delosine or Bullatine F -3.2 C 250.207.86 Ac 420.276, 382.494 Ac 25 5.01 484.2930/- C.g ¹¹ 20.71 Delosine or Bullatine F -3.2 C 250.078 Ac 420.276, 382.494 Ac 420.276, 382.494 Ac 420.4					0			
15 3.52 $4^{7}02744_{-1}$ $C_{a}H_{a}NO_{a}$ Physicine -0.9 Ac 438.2482, 2409, 348.2449, 374.2288 16 3.61 481.1697/5021,498 $C_{a}H_{a}O_{a}$ Particle 0 Ac 438.2482, 140, 274.2281, 346.2473, 356.2319, 372.2143, 354.247 18 4.12 454.2799, - $C_{a}H_{a}NO_{a}$ Particle 0 Ac 438.2482, 140.2742, 242.388.244, 370.2390, 362.2317, 354.244 20 4.70 342.1690, - $C_{a}H_{a}NO_{a}$ No. Neoline -1.8 P 352.167, 324.243, 388.244, 370.2390, 362.2317, 372.248, 388.244, 370.2390, 362.2317, 372.348, 348.249, 370.2390, 362.2317, 372.248, 388.249, 370.2390, 362.2317, 372.248, 388.249, 370.2390, 362.2317, 372.248, 388.2491, 362.2491, 420.276, 388.2482, 389.2494 21 5.00 454.2288, - $C_{a}H_{a}NO_{a}$ Not indentified -57 Ac 352.0581, 352.057, 137.0226 124.1470, 436, 137.0226, 110.0474 126.323, 382.2491 126.226.13, 420.236, 352.221, 10.0474 25 5.62 49.1315/44111, 57, 157.358 $C_{a}H_{a}NO_{a}$ Not indentified -67 As 352.0581, 352.226, 110.2074, 10.2074 126.2288, 37.2281, 358.2401 26 5.52 352.435, 757.2381, 356.241, 358, 348, 366.2195 Not indentified -67 A								
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$					• •			436.2672, 418.2551, 404.2438, 386.2319, 372.2143,
18 4.12 452.252/- $C_{a}H_{ab}N_{0}$ New line 0.0 Ac 432.2573/- 402.2378, 402.2438, 32.044, 370.2300, 362.2317, 355.2163, 332.111, 324.1942 20 4.70 342.1696/- $C_{a}H_{ab}N_{0}$ Not indentified -1.2 Ac 432.2573, 402.2438, 322.044, 330.2300, 362.2317, 355.2163, 332.111, 324.1942 21 5.00 432.2582/- $C_{a}H_{ab}N_{0}$ Do Hulatizamine 0.5 Ac 405.2572, 404.2438 23 5.00 484.22031/- $C_{a}H_{ab}N_{0}$ Do Hulatizamine 0.4 Ac 432.2572, 404.2438 24 5.67 484.2301/- $C_{a}H_{ab}N_{0}$ Not indentified -67 As 252.0318, 225.0527, 137.0226, 119.0474 25 5.83 442.2584/- $C_{a}H_{ab}N_{0}$ Gaurin base H -87 Ac 390.257, 317.2581, 318.24.01 26 5.85.3151517/57.1338 $C_{a}H_{ab}N_{0}$ Isolatizamine -38 Ac 490.2578, 302.2481 27 5.86 576.2783/- $C_{a}H_{ab}N_{0}$ Not indentified -35 Ac 432.2277, 437.2466, 556.2546, 542.238, 542.2305 38 460.2306/- $C_{a}H_{ab}N_{0}$ Not	17	2 65	491 1607/502 1409		Deconiflorin	10	п	
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$			'					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,					356.2195, 338.2111, 324.1942
22 5.01 454.2788/- CarHa, NOp. Declosine or Bullatine F -2.4 Ac 452.2463.402.2485 23 5.09 444.2037 CarHa, NOp. Peudoconnice -0.4 Ac 452.2613.402.2736 24 5.57 285.0738.1 CarDa 253.052.153.225.0527, 157.0226 19.0474 25 5.62 49.1315/41.1125 CarHa, NOp. Tuidatamine -3.8 Ac 300.2355, 37.225.81, 358.2401 28 5.58 551.821.1/57.11538 CarHa, NOp. Builquiritin aprioade -7.2 G 27.563.382.4046 10.4765, 137.0226, 119.0474 28 5.58 551.821.1/57.11538 CarHa, NOp. Builquiritin aprioade -3.8 Ac 420.2756, 388.2494, 356.2195 31 87.8 756.2803.1 CarHa, NOp. Not indentified -3.5 Ac 558.2643, 556.2484 32 9.55 756.2783.1 CarHa, NOp. Not indentified -3.8 Ac 432.2773 34 9.81 606.2906/- CarHa, NOp. Not indentified -3.0								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
24 5.57 285.0738/- Carl H ₂ O ₅ Not indentified -6.7 As 25.0527,1370226 25 5.62 419.135/441-12 Carl H ₂ O ₅ Guanti base H -8.7 Ac 25.0823,1470465,1370226,119.0474 26 5.23 344,2554/- Carl H ₂ O ₅ Guanti base H -8.7 Ac 390.2633,372.2581,338.2401 28 5.98 511.81/571.1538 Carl H ₂ O ₅ Isoliguiritin apioside -7.2 C 202736,388.2408 398.2408 30 452.2990/- Carl H ₄ NO ₆ Chasmanine -3.8 Ac 4202736,388.2408 356.2195 31 87.8 576.2831/- Carl H ₄ NO ₆ Not indentified -0.5 Ac 432.2773 34 9.81 606.2906/- Carl H ₄ NO ₁ Not indentified -0.5 Ac 532.2641, 520.2488 37 11.50 269.0806/- Carl H ₄ NO ₁ 10-04 bernoryintersconine -0.5 Ac 532.2641, 520.2488 37 11.50 269.0806/- Carl H ₄ NO ₁ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
25 5.62 419.315/44.1125 $C_{ar}H_{ar}O_{b}$ Liquiritin -5.2 G 2570823, 1470465, 1370226, 119.0474 27 5.66 422.885/- $C_{ar}H_{ar}O_{b}$ Toluit base H -8.7 Ac 302.6486 28 5.86 511821/6731153 $C_{ar}H_{ar}O_{b}$ Toluit timit misside -7.2 G 2570.823, 1470465, 1370226, 119.0474 29 6.52 438.837/- $C_{ar}H_{ar}O_{b}$ Rollatine B -3.0 Ac 420.2763, 388.2404 356.2195 31 8.78 576.2783/- $C_{ar}H_{a}NO_{b}$ Not indentified -0.0 Ac 558.2463, 526.2488 32 9.55 562.783.571 $C_{ar}H_{a}NO_{b}$ Not indentified -5.5 Ac 552.646, 542.2388, 524.2305 33 9.35 464.2951/- $C_{ar}H_{a}NO_{b}$ Hole barroylnexaconine -0.3 As 250.646, 237.057, 197.0615, 137.0226, 119.0474 34 9.81 665.2906/- $C_{ar}H_{a}O_{b}$ Calcrosin -0.8 C 147.0465, 157.0226, 198.2448, 524.2538, 524.2388, 524.2395 35 12.50 257.0896/- Car_{ar}H_{a}O_{b} Calcrosin								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Isoliquiritin apioside	-7.2	G	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						-3.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	7.80	452.2990/-		Chasmanine	- 3.8	Ac	420.2736, 388.2494, 356.2195
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31	8.78	576.2803/-	C30H41NO10	Not indentified	0.0	Ac	558.2643, 526.2488
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32	9.05	576.2783/-	C ₃₀ H ₄₁ NO ₁₀	Not indentified	- 3.5	Ac	558.2643, 526.2488
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9.35	464.2951/-	$C_{26}H_{41}NO_{6}$	14-Acetyl talatizamine	- 12.1	Ac	432.2773
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$				$C_{31}H_{43}NO_{11}$	•		Ac	588.2817, 574.2646, 556.2546, 542.2388, 524.2305
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c} 469.3008, 451.3207 \\ 41 & 13.89 & 897.4210/919.3862 \\ 42 & 14.00 & 604.3123/- \\ 42 & 14.00 & 604.3123/- \\ 41 & 455.2040/607.1688 \\ 43 & 14.14 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 41 & 14.19 & 558.3033/- \\ 42 & 14.81 & 985.4648/1007.4456 \\ 41 & 14.19 & 574.3026/- \\ 41 & 14.19 & 574.3026/- \\ 41 & 14.19 & 574.3026/- \\ 41 & 14.19 & 574.3026/- \\ 41 & 14.19 & 574.3026/- \\ 41 & 14.19 & 574.3026/- \\ 41 & 14.19 & 574.3026/- \\ 41 & 14.19 & 574.3026/- \\ 41 & 14.19 & 574.3026/- \\ 41 & 15.10 & 81.4171/903.3950 \\ 42 & 41 & 42.19 \\ 43 & 15.51 & 516.2956/- \\ 42 & 41 & 40.18 \\ 44 & 15.51 & 516.2956/- \\ 42 & 41 & 40.18 \\ 45 & 572.2854/- \\ 41 & 62 \\$					-			494.2170, 482.2226, 476.2089
$ \begin{array}{c} C_2 \\ \hline C_2 \\ \hline C_2 \\ \hline C_2 \\ \hline C_3 \\ \hline C_4 \\ \hline C_4 \\ \hline C_4 \\ \hline C_3 \\ \hline C_4 \\ \hline C_3 \\ $					*			469.3008, 451.3207
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,		G2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			'		Benzoyl-3,13-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1/ 01	985 4648/1007 4456	CueHar		0.0	C	800 4334 647 3778 615 3877 452 2225
4715.20881.4171/903.3950 $C_{44}H_{64}O_{18}$ 22-Accetoxyl glycyrrhizic acid0.7G705.3865, 529.3493, 511.3399, 375.05144815.51516.2956/- $C_{29}H_{41}NO_7$ Not indentified0.0Ac484.2714, 442.2635, 414.26834915.58839.4063/861.3860 $C_{42}H_{62}O_{17}$ Isomer of licorice saponin C_2 0.4G663.3721, 469.3302, 451.3207, 375.05145015.84572.2854/- $C_{31}H_{41}NO_9$ Pyromesaconitine0.0Ac554.2723, 540.2614, 522.2462, 508.2337, 490.22195116.10558.3057/- $C_{31}H_{43}NO_8$ Benzoyl-3,13-deoxyaconine-0.7Ac526.2795216.32648.3030/- $C_{32}H_{45}NO_12$ 10-OH mesaconitine2.3Ac616.2684, 602.2960, 598.2704, 588.2817, 570.2712, 556.2546, 550.24655316.58588.3169/- $C_{32}H_{45}NO_12$ 10-OH mesaconitine0.3Ac556.2546, 550.24655316.58588.407/807.4547 $C_{41}H_{68}O_{14}$ Astragaloside IV5.7As605.4075, 587.4001, 569.3823, 473.3640, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386, 419.3310, 455.3507, 437.3386,								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					22-Acetoxyl glycyrrhizic			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48	15.51	516.2956/-	C ₂₉ H ₄₁ NO7		0.0	Ac	484.2714 ,442.2635, 414.2683
			'		Isomer of licorice saponin			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	15.84	572.2854/-	$C_{31}H_{41}NO_9$		0.0	Ac	554.2723, 540.2614, 522.2462, 508.2337, 490.2219
52 16.32 648.3030/- $C_{33}H_{45}NO_{12}$ 10-OH mesaconitine 2.3 Ac 616.2684, 602.2960, 598.2704, 588.2817, 570.2712, 556.2546, 550.2465 53 16.58 588.3169/- $C_{32}H_{45}NO_{12}$ Benzoyldeoxyaconine 0.3 Ac 556.2546, 550.2465 54 16.81 839.4046/861.3860 $C_{42}H_{62}O_{17}$ Licorice saponin G2 -1.7 G 663.3721, 487.3450, 469.3302, 451.3207, 375.0514 55 17.12 785.4807/807.4547 $C_{41}H_{68}O_{14}$ Astragaloside IV 5.7 As 605.4075, 587.4001, 569.3823, 473.3640, 455.3507, 437.3386, 419.3310, 437.3386, 419.3310, 522 56 17.32 865.4205/887.4004 $C_{42}H_{62}O_{17}$ Isomer of licorice saponin -1.3 G 689.3850, 513.3531, 495.3475, 435.3252, 417.3148, 375.05 12 (22) 57 17.36 839.4063/861.3860 $C_{42}H_{62}O_{17}$ Isomer of licorice saponin 0.4 G 663.3721, 487.3450, 469.3302, 451.3207, 375.0514 58 17.84 586.3041/- C_{32}H_{43}NO_9 Pyroaconitine 5.1 Ac 554.2827, 536.2265, 504.2511 59 18.17 823.4109/845.3873 C_{42}H_{62}O_{16} Glycyrrhizic acid -0.2 G								
54 16.81 839.4046/861.3860 $C_{42}H_{62}O_{17}$ Licorice saponin G2 -1.7 G 663.3721, 487.3450, 469.3302, 451.3207, 375.0514 55 17.12 785.4807/807.4547 $C_{41}H_{68}O_{14}$ Astragaloside IV 5.7 As 605.4075, 587.4001, 569.3823, 473.3640, 455.3507, 437.3386, 419.3310, 437.3386, 419.3310, 437.3386, 419.3310, 437.3386, 419.3310, 62 56 17.32 865.4205/887.4004 $C_{44}H_{64}O_{17}$ 22-Acetoxyl licorice saponin -1.3 G 689.3850, 513.3531, 495.3475, 435.3252, 417.3148, 375.05 C2 57 17.36 839.4063/861.3860 $C_{42}H_{62}O_{17}$ Isomer of licorice saponin -1.3 G 663.3721, 487.3450, 469.3302, 451.3207, 375.0514 58 17.84 586.3041/- $C_{32}H_{43}NO_9$ Pyroaconitine 5.1 Ac 554.2827, 536.2265, 504.2511 59 18.17 823.4109/845.3873 $C_{42}H_{62}O_{16}$ Glycyrrhizic acid -0.2 G 647.3778, 471.3452, 453.3335, 435.3252, 407.3329,	52	16.32	648.3030/-		10-OH mesaconitine			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53	16.58	588.3169/-	C32H45NO9	Benzoyldeoxyaconine	0.3	Ac	556.2959, 524.2707, 496.2377
56 17.32 865.4205/887.4004 C44H ₆₄ O ₁₇ 22-Acetoxyl licorice saponin -1.3 G 689.3850, 513.3531, 495.3475, 435.3252, 417.3148, 375.05 57 17.36 839.4063/861.3860 C42H ₆₂ O ₁₇ Isomer of licorice saponin 0.4 G 663.3721, 487.3450, 469.3302, 451.3207, 375.0514 58 17.84 586.3041/- C32H ₄₃ NO9 Pyroaconitine 5.1 Ac 554.2827, 536.2265, 504.2511 59 18.17 823.4109/845.3873 C42H ₆₂ O ₁₆ Glycyrrhizic acid -0.2 G 647.3778, 471.3452, 453.3335, 435.3252, 407.3329,		16.81	839.4046/861.3860	$C_{42}H_{62}O_{17}$		- 1.7	G	
C2 C2 57 17.36 839.4063/861.3860 C ₄₂ H ₆₂ O ₁₇ Isomer of licorice saponin G2 0.4 G 663.3721, 487.3450, 469.3302, 451.3207, 375.0514 58 17.84 586.3041/- C ₃₂ H ₄₃ NO ₉ Pyroaconitine 5.1 Ac 554.2827, 536.2265, 504.2511 59 18.17 823.4109/845.3873 C ₄₂ H ₆₂ O ₁₆ Glycyrrhizic acid -0.2 G 647.3778, 471.3452, 453.3335, 435.3252, 407.3329,				$C_{41}H_{68}O_{14}$	-			437.3386, 419.3310,
G2 58 17.84 586.3041/- C ₃₂ H ₄₃ NO ₉ Pyroaconitine 5.1 Ac 554.2827, 536.2265, 504.2511 59 18.17 823.4109/845.3873 C ₄₂ H ₆₂ O ₁₆ Glycyrrhizic acid -0.2 G 647.3778, 471.3452, 453.3335, 435.3252, 407.3329,	56	17.32	865.4205/887.4004	$C_{44}H_{64}O_{17}$	÷ .	- 1.3	G	689.3850, 513.3531, 495.3475, 435.3252, 417.3148, 375.0514
59 18.17 823.4109/845.3873 C ₄₂ H ₆₂ O ₁₆ Glycyrrhizic acid -0.2 G 647.3778, 471.3452, 453.3335, 435.3252, 407.3329,			,	$C_{42}H_{62}O_{17}$	G2	0.4	G	663.3721, 487.3450, 469.3302, 451.3207, 375.0514
	59	18.17	823.4109/845.3873	$C_{42}H_{62}O_{16}$	Glycyrrhizic acid	-0.2	G	

Peak no.		Measured mass $[M+H]^+/$ $[M+Na]^+$	Molecular formula	Indentify	Error (ppm) ^a	Source ^b	MS ²
60	18.33	632.3056/-	C33H45NO11	Mesaconitine	-1.4	Ac	600.2761, 572.2924, 522.2361
61	18.44	556.2903/-	C31H41NO8	Pyrohypaconitine	-0.4	Ac	524.2606, 492.2320
62	18.72	662.3161/-	C34H47NO12	10-OH aconitine	-1.5	Ac	612.2831, 602.2960, 570.2712, 556.2627
63	18.74	827.4828/849.4619	C43H70O15	Astragaloside II	1.4	As	647.389, 629.4005, 473.3640, 455.3507, 437.3386
64	19.57	823.4112/845.3873	C42H62O16	Licorice saponin H2 or K2	0.1	G	647.3778, 471.3452, 453.3335, 375.0514
65	20.96	616.3114/-	C33H45NO10	Hypaconitine	-0.3	Ac	584.2823, 556.2959, 524.2606, 496.2464, 492.2417,
							464.2476, 338.1788
66	23.48	630.3294/-	$C_{34}H_{47}NO_{10}$	Deoxyaconitine	3.3	Ac	598.3026, 570.3026, 538.2773, 510.2804

^a Error was calculated by $[M+H]^+$, if there is no $[M+H]^+$, $[M+Na]^+$ was used.

^b Ac, E, P, As, G were shorten for Aconiti Radix Cocta, Ephedrae Herba, Paeoniae Radix Alba, Astragali Radix and Glycyrrhiza Radix Preparata.

Table 2

Compounds identified in WTD by UPLC-MS in negative ion mode.

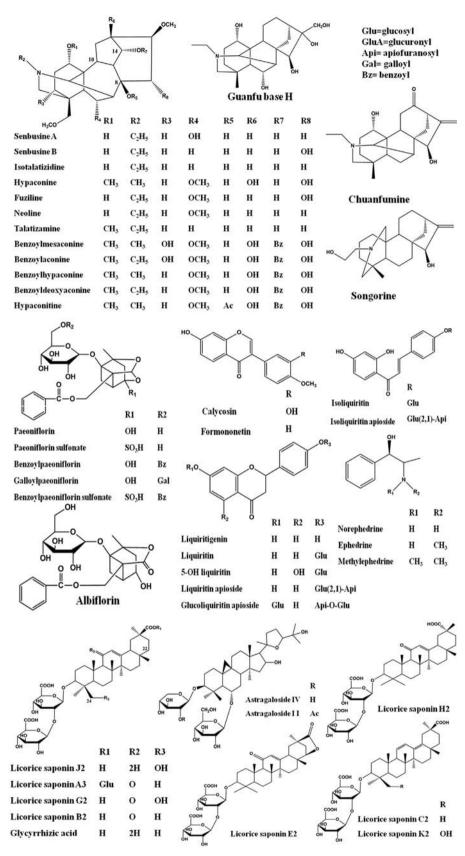
Peak no.	t _R (min)	Measured mass [M – H] ⁻ / [M – HCOO] ⁻	Molecular formula	Indentify	Error (ppm) ^a	Source ^b	MS ²
67	0.62	169.0141/-	C ₇ H ₆ O ₅	Gallic acid	5.9	Р	125.0221
1	0.86	543.1193/-	$C_{23}H_{28}O_{13}S$	Paeoniflorin sulfonate	4.8	Р	497.1121, 421.0795, 375.0743, 259.0279, 213.0206, 121.0294
68	1.78	417.1210/-	C21H22O9	Isoliquiritin	7.2	G	255.0631, 135.0094, 119.0502
69	2.08	711.2150/-	C ₃₂ H ₄₀ O ₁₈	Glucoliquiritin apioside	2.7	G	549.1949, 417.1210, 255.0631
70	2.38	280.1187/-	C14H19NO5	Not indentified	0.7	E	262.1067, 234.1120
13	2.86	479.1525/525.1632	C23H28O11	Albiflorin	-4.8	Р	357.1222, 327.1061, 121.0294
17	3.65	479.1525/525.1632	C23H28O11	Paeoniflorin	-4.8	Р	449.1453, 327.1061, 165.0526, 121.0294
71	5.57	283.0601/-	C ₁₆ H ₁₂ O ₅	Not indentified	0.0	As	268.0317, 211.0414
25	5.62	417.1210/-	C21H22O9	Liquiritin	7.2	G	255.0631, 135.0094, 119.0502
28	6.00	549.1615/-	C ₂₆ H ₃₀ O ₁₃	Isoliquiritin apioside	2.2	G	417.1210, 255.0631, 135.0094, 119.0502
71	6.12	577.1555/-	C27H39O14	Not indentified	0.5	E	413.0831, 293.0465
72	6.62	631.1662/-	C ₃₀ H ₃₂ O ₁₅	Galloylpaeoniflorin	0.8	Р	509.1302, 313.0575
73	8.48	433.1109/-	C ₂₁ H ₂₂ O ₁₀	5-OH liquiritin	-4.6	G	271.0623, 151.0008
74	8.97	647.1409/-	$C_{30}H_{32}O_{14}S$	Benzoylpaeoniflorin sulfonate	- 3.1	Р	259.2079
75	10.21	549.1649/-	C ₂₆ H ₃₀ O ₁₃	Liquiritin apioside	8.4	G	417.1210, 255.0631, 135.0094, 119.0502
35	10.28	267.0638/-	C ₁₆ H ₁₂ O ₄	Formononetin	-5.2	As	252.0400, 251.0317, 223.0423, 195.0438
36	10.43	255.0631/-	C ₁₅ H ₁₂ O ₄	Liquiritigenin	-8.2	G	135.0094, 119.0502
37	11.52	283.0603/-	C ₁₆ H ₁₂ O ₅	Calycosin	0.7	As	268.0388, 267.0276, 239.0351, 211.0414
76	11.79	361.1843/-	C ₁₇ H ₃₀ O ₈	Not indentified	-3.9	E	315.1970
39	12.59	-/634.2870	C31H43NO10	Benzoylmesaconine	1.9	Ac	_
77	13.05	823.4149/-	C42H64O16	Licorice saponin J2	4.6	G	351.0580
40	13.67	999.4459/-	C48H72O22	24-OH licorice saponin A3	2.8	G	837.3892, 485.3244, 351.0850
41	13.90	895.3937/-	$C_{44}H_{64}O_{19}$	22-Acetoxyl licorice saponin G2	-2.3	G	351.0580
45	14.81	983.4461/-	C48H72O21	Licorice saponin A3	-2.1	G	821.4030, 469.3272, 351.0580
47	15.21	879.4042/-	$C_{44}H_{64}O_{18}$	22-Acetoxyl glycyrrhizic acid	3.8	G	351.0580, 193.0344
78	15.28	835.3786/-	C ₄₂ H ₆₀ O ₁₇	24-OH Licorice saponin E2	4.7	G	351.0580
49	15.58	837.3948/-	$C_{42}H_{62}O_{17}$	Isomer of licorice saponin G2	5.4	G	351.0580
79	16.47	881.4231/-	$C_{44}H_{66}O_{18}$	22-Acetoxyl licorice saponin J2	7.5	G	351.0580
80	16.76	819.3837/-	C42H60O16	Licorice saponin E2	4.8	G	351.0580
54	16.80	837.3931/-	C42H62O17	Licorice saponin G2	3.3	G	351.0580
55	17.12	-/829.4594	C41H68O14	Astragaloside IV	0.5	As	-
81	17.34	863.4081/-	$C_{44}H_{64}O_{17}$	22-Acetoxyl licorice saponin C2	2.4	G	351.0580
57	17.34	837.3921/-	$C_{42}H_{62}O_{17}$	Isomer of licorice saponin G2	2.1	G	351.0580
59	18.17	821.3981/-	C42H62O16	Glycyrrhizic acid	3.3	G	351.0580
82	19.17	807.4207/-	C ₄₂ H ₆₄ O ₁₅	Licorice saponin B2	5.7	G	351.0580
64	19.53	821.3965/-	C ₄₂ H ₆₂ O ₁₆	Licorice saponin H2 or K2	1.3	G	351.0580
83	20.02	821.3999/-	C ₄₂ H ₆₂ O ₁₆	Licorice saponin H2 or K2	5.5	G	351.0580

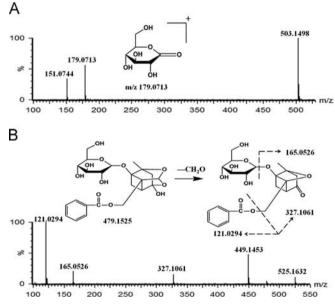
^a Error was calculated by $[M-H]^-$, if there is no $[M-H]^-$, $[M+HCOO]^-$ was used.

^b Ac, E, P, As, G were shorten for Aconiti Radix Cocta, Ephedrae Herba, Paeoniae Radix Alba, Astragali Radix and Glycyrrhiza Radix Preparata.

Calycosin, formononetin and liquiritin were identified by reference compounds. Compound 36 gave $[M+H]^+$ ion at m/z 257 and $[M-H]^-$ ion at m/z 255, 162 Da less than that of liquiritin. Its fragment ions were as same as liquiritin in low m/z region. It was

presumed as liquiritigenin. Compound 68 showed the same MS and MS^2 pattern as liquiritin. It could be the reported isoliquiritin. Compound 73 showed $[M-H]^-$ ion at m/z 433 and fragment ion at m/z 271, suggesting that it had an additional hydroxyl than





Fig. 3. Chemical structures of main constitutions found in WTD.

liquiritin. It was tentatively identified as 5-OH liquiritin. Compounds 28 and 69 had the same molecular weight at 550 Da, and fragment ions at m/z 417, 255, 135 and 119 implying that they

might derive from liquiritin or isoliquiritin with an additional apiosyl substitution. The retention time of isoliquiritin was shorter than liquiritin, thus the retention time of apiosyl substituted

Fig. 4. Tandem mass spectra and possible fragment pathways of ephedrine (A) and hypaconine (B) in positive ion mode.

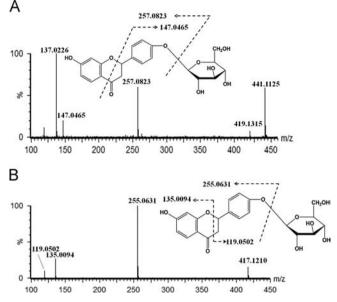


Fig. 5. Tandem mass spectra and possible fragment pathways of paeoniflorin in positive (A) and negative (B) ion mode.

isoliquiritin should be also shorter than apiosyl substituted liquiritin in this study. Compounds 28 and 69 were presumed as isoliquiritin apioside and liquiritin apioside, respectively. Compound 69 showed $[M-H]^-$ ion at m/z 711, and fragment ions at m/z 549 and 417 corresponding to $[M-Glu-H]^-$ and $[M-Glu-Api-H]^-$, respectively. It could be the reported glucoliquiritin apioside.

3.2.4. Triterpene saponins

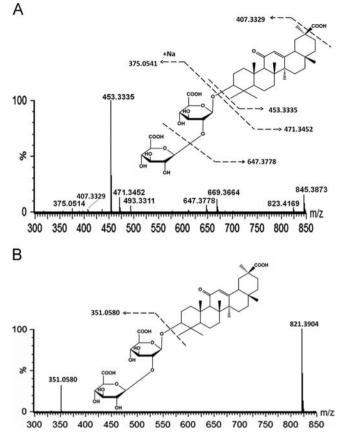

The major triterpene saponins in WTD were acidic saponins from Glycyrrhiza Radix Preparata and neutral saponins from Astragali Radix. All triterpene saponins in WTD were observed by $[M+H]^+$ and $[M+Na]^+$ in positive ion mode. In negative ion

Fig. 6. Tandem mass spectra and possible fragment pathways of liquiritin in positive (A) and negative (B) ion mode.

mode neutral saponins were detected by $[M-H]^-$ and $[M+HCOO]^-$, but only $[M-H]^-$ for acidic saponins was observed. Like other saponins, the main fragmentation pattern was the cleavage at the glycosidic linkages. Glycyrrhizic acid and astragaloside IV were identified by comparing retention time and accurate mass with the standards. The MS² spectrum and possible fragmentation pathways of glycyrrhizic acid are depicted in Fig. 7. In positive ion mode, $[M-2GlcA-H_2O+H]^+$ was the base peak. The neutral losses of 176 Da, 2×176 Da and their corresponding sodium adjunction peaks and $[2GlcA+Na]^+$ were also observed. In negative ion mode only $[2GlcA-H]^-$ was detected. Based on the cleavage patterns discussed above, 18 triterpene saponins were indentified with accurate mass and similar tandem MS behavior.

Compounds 64 and 83 showed the same molecular weight at 822 Da and almost consistent tandem MS behavior with glycyrrhizic acid. They may be the reported licorice saponin H2 or K2. Due to the limited information, these isomers could not be distinguished by MS. Compound 77 gave $[M-H]^-$ ion at m/z 823 and fragment ion at m/z 351, thus it was presumed as licorice saponin J2. Compounds 49, 54 and 57 showed the same MS and MS² spectra, and their quasi-molecular ions and fragment ions were 16 Da more than these of glycyrrhizic acid except [2GlcA+Na]⁺ and [2GlcA-H]⁻. Because compound 54 was the most abundant among them, it had more possibility to be licorice saponin G2. The other two could be isomers of saponin G2. Compounds 41, 47 and 79 were 58 Da greater than compounds 54, 59 and 77, respectively, implying that they had an additional acetoxyl substituent. Acetoxyl group at C22 position was commonly found in licorice saponins. From these points above, compounds 41, 47 and 79 were identified as 22acetoxyl licorice saponin G2, 22- acetoxyl glycyrrhizic acid and 22acetoxyl licorice saponin J2, respectively. Compound 82 was 14 Da less than glycyrrhizic acid. It could be the reported licorice saponin B2. Compound 80 gave $[M-H]^-$ ion at m/z 819, and compound 78 showed $[M-H]^-$ ion at m/z 835 which was 16 Da greater than that of compound 80. They were considered as licorice saponin E2 and 24-OH licorice saponin E2, respectively. Compound 81 gave [M–H]⁻ ion at m/z 863 to be presumed as 22-acetoxyl licorice saponin C2. Compound 63 gave 42 Da greater $[M+H]^+$ and $[M+Na]^+$ ions than these of astragaloside IV, suggesting that it might have an additional acetyl compared with astragaloside IV. Fragment ions at m/z 647

Fig. 7. Tandem mass spectra and possible fragment pathways of glycyrrhizic acid in positive (A) and negative (B) ion mode.

and 473 corresponding to $[M-Glc+H]^+$ and $[M-Glc-Acetyl Xyl+H]^+$ showed that compound 63 was astragaloside II.

4. Conclusion

Chemical profiling of WTD were obtained by a simple and effective UPLC–Q-TOF-MS method in both positive and negative ion mode. 74 components including alkaloids, monoterpene glycosides, triterpene saponins, flavones and flavone glycosides were identified or presumed based on their accurate mass and fragment patterns. All the constitutions were also detected in the corresponding individual herbs. The UPLC-Q-TOF-MS method established in this study could also be used for quality control of WTD and provide reference method for quality control of individual herbs. It could also provide a basis for further study *in vivo* of WTD.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 81073040, 81274046) and the National Basic Research Program of China (973 Program) (Nos. 2011CB505300, 2011CB505305).

References

- [1] D. Normile, Science 299 (2003) 188-190.
- [2] R. Stone, Science 319 (2008) 709–710.
- [3] L. Wang, G.B. Zhou, P. Liu, J.H. Song, Y. Liang, X.J. Yan, F. Xu, B.S. Wang, J.H. Mao, Z.X. Shen, S.J. Chen, Z. Chen, Proc. Natl. Acad. Sci. 105 (2008) 4826–4831.
- X.L. Zhang, X.D. Guo, S.R. Lin, J. Liaoning Coll. TCM 7 (2005) 630.
 Y. Zhang, D. Wang, S. Tan, H. Xu, C. Liu, N. Lin, Evidence-based Complementary
- Alternative Med. (2013), http://dx.doi.org/10.1155/2013/548498. [6] J.-B. Jiang, J.-D. Oiu, L.-H. Yang, J.-P. He, G.W. Smith, H.-O. Li, Int, J. Rheum, Dis
- [6] J.-B. Jiang, J.-D. Qiu, L.-H. Yang, J.-P. He, G.W. Smith, H.-Q. Li, Int. J. Rheum. Dis. 13 (2010) 396–405.
- [7] J. Li, C. Peng, J. Ji, J. Chin. Materia Medica 34 (2009) 2937-2942.
- [8] Y.J. Zheng, Z.Y. Guo, W.G. He, Y. Yang, Y.H. Li, A.X. Zheng, P. Li, Y. Zhang, J.Z. Ma, M.Y. Wen, M.Y. Yang, H.Z. An, G. Ji, Y.Z. Yu, Int. Immunopharmacol. 13 (2012) 46–53.
- [9] T.-Y. Wu, T. Khor, C. Saw, S. Loh, A. Chen, S. Lim, J. Park, L. Cai, A.-N. Kong, AIAPS J. 13 (2011) 1–13.
- [10] H.Q. Wang, S. Guo, D.W. Qian, Y.F. Qian, J.A. Duan, J. Pharm. Biomed. Anal. 67–68 (2012) 16–21.
- [11] G. Tan, Z. Zhu, J. Jing, L. Lv, Z. Lou, G. Zhang, Y. Chai, Biomed. Chromatogr. 25 (2011) 913–924.
- [12] N. Dartora, L.M. de Souza, A.P. Santana, M. Iacomini, A.T. Valduga, P.A.J. Gorin, G.L. Sassaki, Food Chem. 129 (2011) 1453–1461.
- [13] D. Guillarme, J. Schappler, S. Rudaz, J.L. Veuthey, TrAC, Trends Anal. Chem. 29 (2010) 15–27.
- [14] G.A. Theodoridis, H.G. Gika, E.J. Want, I.D. Wilson, Anal. Chim. Acta 711 (2012) 7-16.
- [15] H. Yue, Z. Pi, F. Song, Z. Liu, Z. Cai, S. Liu, Talanta 77 (2009) 1800–1807.
- [16] Y. Wang, F. Song, Q. Xu, Z. Liu, S. Liu, J. Mass Spectrom. 38 (2003) 962-970.
- [17] R. Hu, J. Zhao, L.-W. Qi, P. Li, S.-L. Jing, H.-J. Li, Rapid Commun. Mass Spectrom. 23 (2009) 1619–1635.
- [18] L.H. Chen, L.J. Jin, Z.M. Su, Y.Q. Qiu, Y. Wang, S.Y. Liu, Chem. J. Chin. Univ.-Chin. 26 (2005) 2340-2344.
- [19] E.H. Liu, L.-W. Qi, B. Li, Y.-B. Peng, P. Li, C.-Y. Li, J. Cao, Rapid Commun. Mass Spectrom. 23 (2009) 119–130.
- [20] J. Wu, H. Shen, J. Xu, L.-Y. Zhu, X.-B. Jia, S.-L. Li, Molecules 17 (2012) 8938–8954.
- [21] L. Chen, J. Qi, Y.-X. Chang, D. Zhu, B. Yu, J. Pharm. Biomed. Anal. 50 (2009) 127–137.
- [22] H. Dong, Z. Liu, F. Song, Z. Yu, H. Li, S. Liu, Rapid Commun. Mass Spectrom. 21 (2007) 3193–3199.
- [23] N. Fabre, I. Rustan, E. Hoffmann, J. Quetin-Leclercq, J. Am. Soc. Mass Spectrom. 12 (2001) 707–715.
- [24] E. Hvattum, D. Ekeberg, J. Mass Spectrom. 38 (2003) 43-49.
- [25] Y.L. Ma, Q.M. Li, H. Van den Heuvel, M. Claeys, Rapid Commun. Mass Spectrom. 11 (1997) 1357–1364.
- [26] F. Cuyckens, R. Rozenberg, E. de Hoffmann, M. Claeys, J. Mass Spectrom. 36 (2001) 1203–1210.